ncsur

Cardiovascular Dynamics

Group

# Uncertainty in hemodynamic predictions in the pulmonary vasculature



2

Mitchel Colebank<sup>1</sup>, M. Umar Qureshi<sup>1</sup>, Dirk Husmeier<sup>2</sup>, Naomi Chesler<sup>3</sup>, Mette Olufsen<sup>1</sup>

1) Mathematics, NC State University, Raleigh, NC 2) Statistics, University of Glasgow, Glasgow UK, 3) Bioengineering, University of Wisconsin, Madison, WI

0.2

### INTRODUCTION

- Pulmonary hypertension (PH) is defined as a mean pulmonary arterial blood pressure ≥ 25 mmHg. Comorbid heart failure accounts for over 80% of incidents. PH has been recognized as the third most common cardiovascular condition behind coronary heart disease and systemic hypertension.
- Definitive diagnosis requires invasive right heart catheterization (RHC), typically performed 3-4 years after the disease onset. Despite advancements in drug therapy there is no cure.
- Disease progression is monitored via frequent noninvasive imaging and recurrent RHCs, increasing the risk of morbidity and infection.

## SENSITIVITY ANALYSIS

Local sensitivities

$$S(t,\theta_i) = \frac{\partial p_{mpa}(0,t,\theta)}{\partial \theta_i} \frac{\theta_i}{\bar{p}_{mpa}}, \qquad \bar{S}(\theta_i) = \|S(t,\theta_i)\|$$

Morris indices (global)

$$d^{j}(\theta_{i}) = \frac{f\left(\theta^{j} + e_{i}\Delta, t\right) - f\left(\theta^{j}, t\right)}{\Delta}, \qquad j = 1, \dots, K, \qquad \Delta = \frac{L}{2(L-1)}$$
$$\mu_{i}^{*} = \frac{1}{K} \sum_{i=1}^{K} \left|d_{i}^{j}\right|, \qquad \sigma_{i}^{2} = \frac{1}{K-1} \sum_{i=1}^{K} \left(d_{i}^{j} - \mu\right)^{2}$$

This study shows how non-invasive image acquisition combined with mathematical modeling, sensitivity analysis, and uncertainty quantification can be used to identify biomarkers modulated by disease.

## MODEL

#### Conservation laws

Conservation of mass

 $\frac{\partial A}{\partial t} + \frac{\partial q}{\partial x} = 0$ 

Conservation of momentum

$$\frac{\partial q}{\partial t} + \frac{\partial}{\partial x} \left( \frac{q^2}{A} \right) + \frac{A}{\rho} \frac{\partial p}{\partial x} = -\frac{2\pi \nu r q}{\delta} \frac{q}{A}$$

Constitutive equation

$$p(r_0, A) = \beta \left( \sqrt{\frac{A}{A_0}} - 1 \right), \qquad \beta = \frac{4 E}{3 r_0}$$

**Boundary conditions:** 

Inflow: Specified from measured flow data

# **UNCERTAINTY QUANTIFICATION**

Confidence (X = 0) and prediction (X = 1) intervals (asymptotic)

j=1

 $y_{I}(t_{i}) = y(t_{i}, \hat{\theta}) \pm t_{n-p}^{\alpha/2} \hat{\sigma}(X + g_{i}(S^{T}S)^{-1}g_{i})^{1/2}$ 

where  $g_i^T$  is the i'th row of the sensitivity matrix S,  $\hat{\theta}$  are the optimized parameters, and  $\hat{\sigma} = J$  is the estimated variance.

DRAM: Credible intervals sampled from parameter distributions

$$\tau(\theta|y) = \frac{\pi(y|\theta)\pi_0(\theta)}{\pi(y)}$$

## RESULTS

**Fig 2.** Sensitivity Analysis: The peripheral resistance scaling factor  $r_T$  is the most sensitive parameter, while the compliance scaling factor c is the least sensitive. Sensitivity of vessel stiffness  $\beta$  and the reflective peripheral resistance  $r_1$  are similar, though as the network size grow,  $\beta$  becomes more sensitive (not shown).



Junction conditions

$$q_p = q_{d_1} + q_{d_2}$$
,  $p_p = p_{d_1} = p_{d_2}$ 

**Outflow** (Windkessel model)

$$\frac{dp}{dt} - R_1 \frac{dq}{dt} = q \frac{R_1 + R_2}{R_2 C} - \frac{p}{R_2 C}$$

$$R_1 = r_1 R_{1,nom}, \qquad R_T = R_1 + R_2 = r_T R_{T,nom}, \qquad C_T = c C_{T,nom}$$

Parameters estimated minimizing the least squares cost

$$\hat{\theta} = \arg\min_{\theta} J(\theta), \qquad \theta = \{r_1, r_T, c, \beta\}$$
$$J = \frac{1}{N} \sum_{i=1}^{n} \left( p(t_i, \theta) - p_{mpa}(t_i) \right)^2$$

#### Pulmonary arterial network geometry variation

Vessel lengths, radius, and network connectivity obtained by segmenting micro-CT images from 7 healthy and 5 hypertensive (hypoxia induced) mice.



**Fig 3.** DRAM simulations (left) show that  $\beta$ ,  $r_1$ , and  $r_T$  are correlated. Fixing  $\beta$  at its nominal value we computed parameter distributions (right) and credible intervals (insert). For the hypoxic mouse (red)  $r_T$  and  $\beta$  are higher and c is lower than for the control animal, i.e. both peripheral and proximal vessels remodel. Stars mark optimized values from local predictions.



**Fig 4.** Predictions of pressure obtained from 1000 simulations varying the geometry (length and diameter) accounting for population variation (analysis on 7 control and 5 hypertensive mice). As expected geometry variation is more significant than variation around internal parameters (compare MPA panel with prediction intervals displayed above).



- The peripheral resistance scaling factor  $r_T$  is the most sensitive parameter.
- Parameters  $r_1$  and  $\beta$  (and  $r_T$ ) are correlated, fixing  $\beta$  gives an uncorrelated subset.
- Pressure predictions show that the variation with geometry is more influential than internal parameters  $\theta = \{r_1, r_T, c, \beta\}$ .
- Predictions of flow vary less (marked on Fig 1.) as it is specified at the inlet.

This work was supported in part by NSF/DMS-1246991, NSF/DMS 1615820, and the UK Engineering and Physical Sciences Research Council (Grant No. EP/N014642/1)