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Conservation	laws
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• Constitutive	equation
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Boundary	conditions:
• Inflow: Specified	from	measured	flow	data
• Junction	conditions

𝑞< = 𝑞=> + 𝑞=?	, 		 𝑝< = 𝑝=> = 𝑝=?
• Outflow (Windkessel model)
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𝑅B = 𝑟B𝑅B,DEF, 	 𝑅G = 𝑅B + 𝑅) = 𝑟G𝑅G,DEF, 𝐶G = 𝑐𝐶G,DEF

Parameters	estimated	minimizing	the	least	squares	cost
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Pulmonary	arterial	network	geometry	variation
Vessel	lengths,	radius,	and	network	connectivity	obtained	by	segmenting	micro-CT	
images	from	7	healthy	and	5	hypertensive	(hypoxia	induced)	mice.
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INTRODUCTION
• Pulmonary	hypertension	(PH)	is	defined	as	a	mean	pulmonary	arterial	blood	

pressure	≥	25	mmHg.	Comorbid	heart	failure	accounts	for	over	80%	of	incidents.	
PH	has	been	recognized	as	the	third	most	common	cardiovascular	condition	
behind	coronary	heart	disease	and	systemic	hypertension.	

• Definitive	diagnosis	requires	invasive	right	heart	catheterization	(RHC),	typically	
performed	3-4	years	after	the	disease	onset.	Despite	advancements	in	drug	
therapy	there	is	no	cure.	

• Disease	progression	is	monitored	via	frequent	noninvasive	imaging	and	recurrent	
RHCs,	increasing	the	risk	of	morbidity	and	infection.

• This	study	shows	how	non-invasive	image	acquisition	combined	with	
mathematical	modeling,	sensitivity	analysis,	and	uncertainty	quantification	can	be	
used	to	identify	biomarkers	modulated	by	disease.

SENSITIVITY	ANALYSIS
• Local	sensitivities
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• Morris	indices	(global)
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UNCERTAINTY	QUANTIFICATION
• Confidence	(𝑋 = 0)	and	prediction	(𝑋 = 1)	intervals	(asymptotic)
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where		𝑔WG is	the	i’th row	of	the	sensitivity	matrix	S,	𝜃J are	the	optimized	parameters,	
and	𝜎q = 𝐽 is	the	estimated	variance.	

• DRAM:	Credible	intervals	sampled	from	parameter	distributions
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CONCLUSIONS
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Global Fig 2. Sensitivity Analysis: The peripheral resistance scaling factor

𝑟G is the most sensitive parameter, while the compliance scaling
factor 𝑐 is the least sensitive. Sensitivity of vessel stiffness 𝛽 and
the reflective peripheral resistance 𝑟B are similar, though as the
network size grow, 𝛽 becomes more sensitive (not shown).

Fig 3. DRAM simulations (left) show that 𝛽,	 𝑟B, and 𝑟G are correlated. Fixing	𝛽 at its nominal
value we computed parameter distributions (right) and credible intervals (insert). For the
hypoxic mouse (red) 𝑟G and 𝛽 are higher and 𝑐 is lower than for the control animal, i.e. both
peripheral and proximal vessels remodel. Stars mark optimized values from local predictions.
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Fig 4. Predictions of pressure obtained from 1000 simulations varying the geometry (length
and diameter) accounting for population variation (analysis on 7 control and 5 hypertensive
mice). As expected geometry variation is more significant than variation around internal
parameters (compare MPA panel with prediction intervals displayed above).
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• The	peripheral	resistance	scaling	factor	𝑟G is	the	most	sensitive	parameter.
• Parameters	𝑟B and	𝛽 (and	𝑟G)	are	correlated,	fixing	𝛽	gives	an	uncorrelated	subset.
• Pressure	predictions	show	that	the	variation	with	geometry	is	more	influential	than	

internal	parameters	𝜃 = 𝑟B, 𝑟G, 𝑐, 𝛽 .
• Predictions	of	flow	vary	less	(marked	on	Fig	1.)	as	it	is	specified	at	the	inlet.	
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Fig	1.	Representative	control	(blue)	and	hypertensive	(red)	networks	extracted	from	micro-CT	data.


