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1. Introduction

. Pulmonary hypertension (PH) is one of the leading causes for right heart failure.
N fm’A) Parameter inference can be used to predict pulmonary haemodynamics, which helps clinicians diag-
Pressure nose and treat pulmonary hypertension in a systematic manner, but faces many challenges due to model
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complexity, high computational cost, and limited amount of data available. Often, the parameters cannot
’%% be measured in-vivo, and thus need to be learnt from the measured data.
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e @ ‘;%. @ z@@ We solve partial differential equations (PDEs) to find parameter estimates that minimise the Euclidean

o . HE z@@ distance between measured and simulated time series of blood flow and pressure. We use Markov Chain

7] [z E%Qi‘ E@@ Monte Carlo (MCMC) methods to quantify uncertainty around these estimates by approximately
E\@% 4 sampling parameters from their posterior distribution.

We significantly reduce the computational costs associated with solving the PDEs by using Gaussian

. Processes (GPs) to emulate the Euclidean distance.
Network of pulmonary vessels in a mouse lung

2. Mathematical Model 4. Results

The 1D fluids model, coupled with an Windkessel Results are shown for a healthy mouse. In the left figure below, S exhibits unimodality in 2D for two
model predicts pulmonary arterial flow and pres- of the parameters. Markov chains (superimposed in red) explore the regions of high likelihood or high
sure by solving a system of PDEs: posterior probability. In the right figure: the optimised pressure waveform follows closely the measured
0 q° Adp 2TUT . pressure.
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and x (cm),t (s): axial and temporal coordinates, We consider:

p (mmHg): blood pressure, ¢ (ml/s): blood flow
rate, A (cm”): cross-sectional area, f (mmHg):
arterial network stiffness, R, Ro: Windkessel re-

sistances enforced on the flow and C': compliance 0 500 1000 1500 2000 0 500 1000 1500 2000

of arteries in the vascular bed. 555 s 13 . e Inverse-Gamma prior for the noise variance.
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3. Statistical Inference

The resulting Markov chains fluctuate around the op-
Statistical model: y; = m;(0) + €;, where 016 & p

' ' | ' 18 ' ' ' timised values (red vertical lines) — see left figure.
® y: no|sy measured data, 0 500 1000 1500 2000 0 500 1000 1500 2000 ( )
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factors for Windkessel parameters in (3)-(4),
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e ¢: additive Gaussian iid measurement errors. Wi NN .
Employ nonlinear constrained optimization [1] | | ~ c®sefomlag L B s %&. ________ e reE

- dent, as given by the effective sample size a0 Lag
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e Autocorrelation function (ACF) registers a de- § o4

crease from lag 1.
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(ESS), which corrects the total sample size by .
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Use GPs to emulate S, and quantify the un- the autocorrelation. R ool 2 e
certainty around the parameter estimates us- g 04 g 04
ing Adaptive Riemann Manifold Hamiltonian The Markov chains, and the ACF and ESS are ob- s oz} L 2 02| LJ
Monte Carlo (ARMHMC) [2]. tained based on MCMC combined with emulation. § °F——esehelelesne, g ogtcettalelotrr e,
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