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1. Introduction
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Pulmonary hypertension (PH) is one of the leading causes for right heart failure.
Parameter inference can be used to predict pulmonary haemodynamics, which helps clinicians diag-
nose and treat pulmonary hypertension in a systematic manner, but faces many challenges due to model
complexity, high computational cost, and limited amount of data available. Often, the parameters cannot
be measured in-vivo, and thus need to be learnt from the measured data.

We solve partial differential equations (PDEs) to find parameter estimates that minimise the Euclidean
distance between measured and simulated time series of blood flow and pressure. We use Markov Chain
Monte Carlo (MCMC) methods to quantify uncertainty around these estimates by approximately
sampling parameters from their posterior distribution.
We significantly reduce the computational costs associated with solving the PDEs by using Gaussian
Processes (GPs) to emulate the Euclidean distance.

2. Mathematical Model
The 1D fluids model, coupled with an Windkessel
model predicts pulmonary arterial flow and pres-
sure by solving a system of PDEs:
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and x (cm), t (s): axial and temporal coordinates,
p (mmHg): blood pressure, q (ml/s): blood flow
rate, A (cm2): cross-sectional area, f (mmHg):
arterial network stiffness, R1, R2: Windkessel re-
sistances enforced on the flow and C: compliance
of arteries in the vascular bed.

3. Statistical Inference
Statistical model: yi = mi(θ) + εi, where

• y: noisy measured data,
• m(.): predicted data from (1)-(4) ,
• θ = {f, r1, r2, c}, where f : stiffness, r1, r2,
c: resistances and capacitance adjustment
factors for Windkessel parameters in (3)-(4),

• ε: additive Gaussian iid measurement errors.
Employ nonlinear constrained optimization [1]
to minimise the residual-sum-of-squares (S),

S =
n∑

i=1
(yi −mi(θ))2. (5)

Use GPs to emulate S, and quantify the un-
certainty around the parameter estimates us-
ing Adaptive Riemann Manifold Hamiltonian
Monte Carlo (ARMHMC) [2].

4. Results
Results are shown for a healthy mouse. In the left figure below, S exhibits unimodality in 2D for two
of the parameters. Markov chains (superimposed in red) explore the regions of high likelihood or high
posterior probability. In the right figure: the optimised pressure waveform follows closely the measured
pressure.

We consider:

• Posterior distribution ∝ prior × likelihood.

• Weakly informative prior for the parameters θ.

• Inverse-Gamma prior for the noise variance.

• Normally distributed data y.

The resulting Markov chains fluctuate around the op-
timised values (red vertical lines) – see left figure.

Investigate correlation between samples and report:

• Autocorrelation function (ACF) registers a de-
crease from lag 1.

• On average, 50% of the samples are indepen-
dent, as given by the effective sample size
(ESS), which corrects the total sample size by
the autocorrelation.

The Markov chains, and the ACF and ESS are ob-
tained based on MCMC combined with emulation.

5. Discussion
• Successfully predicted the pulmonary haemodynamics in a healthy mouse by inferring parameter

values and quantifying uncertainty using MCMC schemes.
• Coupling MCMC with emulation leads to significant drop in computational costs compared to

explicitly solving the PDEs (from several weeks or months down to a few days).
• Work can be extended to diseased mouse and human data.

6. Acknowledgements
This work is part of the research programme of the Centre for multiscale soft tissue mechanics with applica-
tion to heart & cancer (SofTMech), funded by EPSRC of the UK, grant reference number EP/N014642/1.

7. References
[1] M. Paun et al. Parameter inference in the pulmonary

circulation of mice. In Proceedings of the 32nd IWSM,
volume 1, pages 190–195, 2017.

[2] M. Girolami et al. Riemann manifold Langevin and
Hamiltonian Monte Carlo methods. J. of the Royal
Statistical Society, Series B (Methodological.

[3] M. Paun et al. MCMC methods for inference in a
mathematical model of pulmonary circulation. Statis-
tica Neerlandica, 2017. Accepted.

[4] M.U. Qureshi et al. A computation study of pulmonary
haemodynamics in healthy and hypoxic mice. Biome-
chanics and Modelling in Mechanobiology, 2018. Sub-
mitted.


